Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202307.1532.v1

ABSTRACT

New Jersey was among the first states impacted by the COVID-19 pandemic, with one of the highest overall death rates in the nation. Nevertheless, relatively few reports have been published focusing specifically on New Jersey. Here we report on molecular, clinical, and epidemiologic observations from the largest healthcare network in the state, in a cohort of vaccinated and unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection. We conducted molecular surveillance of SARS-CoV-2-positive nasopharyngeal swabs collected in nine hospitals from December 2020 through June 2022, using both whole genome sequencing (WGS) and a real-time RT-PCR screening assay targeting spike protein mutations found in variants of concern (VOC) within our region. De-identified clinical data were obtained retrospectively, including demographics, COVID-19 vaccination status, ICU admission, ventilator support, mortality, and medical history. Statistical analyses were performed to identify associations between SARS-CoV-2 variants, vaccination status, clinical outcomes, and medical risk factors. A total of 5,007 SARS-CoV-2-positive nasopharyngeal swabs were successfully screened and/or sequenced. Variant screening identified three predominant VOC, including Alpha (n =714), Delta (n =1,877), and Omicron (n =1,802). Omicron isolates were further sub-typed as BA.1 (n =899), BA.2 (n =853), and BA.4/BA.5 (n =50); the remaining 614 isolates were classified as “Other”. Approximately 31.5% (1,577/5,007) of the samples were associated with vaccine breakthrough infections, which increased in frequency following the emergence of Delta and Omicron. Severe clinical outcomes included ICU admission (336/5007 = 6.7%), ventilator support (236/5007 = 4.7%), and mortality (430/5007 = 8.6%), with increasing age being the most significant contributor to each (p <0.001). Unvaccinated individuals accounted for 79.7% (268/336) of ICU admissions, 78.3% (185/236) of ventilator cases, and 74.4% (320/430) of deaths. Highly significant (p <0.001) increases in mortality were observed in individuals with cardiovascular disease, hypertension, cancer, diabetes, and hyperlipidemia, but not with obesity, thyroid disease, or respiratory disease. Significant differences (p <0.001) in clinical outcomes were also noted between SARS-CoV-2 variants, including Delta, Omicron BA.1, and Omicron BA.2. Vaccination was associated with significantly improved clinical outcomes in our study, despite an increase in breakthrough infections associated with waning immunity, greater antigenic variability, or both. Underlying comorbidities contributed significantly to mortality in both vaccinated and unvaccinated individuals, with increasing risk based on the total number of comorbidities. Real-time RT-PCR-based screening facilitated timely identification of predominant variants using a minimal number of spike protein mutations, with faster turnaround time and reduced cost compared to WGS. Continued evolution of SARS-CoV-2 variants will likely require ongoing surveillance for new VOCs, with real-time assessment of clinical impact.


Subject(s)
Genomic Instability , Respiratory Tract Diseases , Cardiovascular Diseases , Diabetes Mellitus , Neoplasms , Breakthrough Pain , Obesity , Hypertension , COVID-19 , Thyroid Diseases , Hyperlipidemias
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.30.21259761

ABSTRACT

ABSTRACT Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called Variants of Concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated healthcare professionals (HCP). Our post-vaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network, identified all vaccinated HCP who tested positive for COVID-19 after routine screening or after self-reporting. From 01/01/2021 to 04/30/2021, 23,687 HCP received either mRNA-1273 or BNT162b2 mRNA vaccine. All available post-vaccination SARS-CoV-2 samples and a random collection from non-vaccinated patients during the similar timeframe were subjected to VOC screening and whole genome sequencing (WGS). 62% (23,697/37,500) of HCPs received at least one vaccine dose, with 95% (22,458) fully vaccinated. We detected 138 (0.58%, 138/23,697) COVID-19 cases, 105 among partially vaccinated and 33 (0.15%, 33/22,458) among fully vaccinated. Five partially vaccinated required hospitalization, four with supplemental oxygen. VOC screening from 16 fully vaccinated HCPs identified 6 (38%) harboring N501Y and 1 (6%) with E484K polymorphisms; concurrent non-vaccinated samples was 37% (523/1404) and 20% (284/1394), respectively. There was an upward trend from January to April for E484K/Q (3% to 26%) and N501Y (1% to 49%). WGS analysis from vaccinated and non-vaccinated individuals indicated highly congruent phylogenies. We did not detect an increased frequency of any RBD/NTD polymorphism between groups (P>0.05). Our results support robust protection by vaccination, particularly among recipients of both doses. Despite VOCs accounting for over 40% of SARS-CoV-2 from fully vaccinated individuals, the genomic diversity appears to proportionally represent those among non-vaccinated populations. IMPORTANCE A number of highly effective vaccines have been developed and deployed to combat the COVID-19 pandemic. The emergence and epidemiological dominance of SARS-CoV-2 mutants, with high transmission potential and immune evasion properties, the so-called Variants of Concern (VOC), continues to be a major concern. Whether these VOCs alter the efficacy of the administered vaccines is of great concern, and a critical question to study. We describe the initial genomic epidemiology of SARS-CoV-2 recovered from vaccinated healthcare professionals and probe specifically for VOC enrichment. Our findings support the high-level of protection provided by full vaccination despite a steep increase in the prevalence of polymorphisms associated with increased transmission potential (N501Y) and immune evasion (E484K) in the non-vaccinated population. Thus, we do not find evidence of VOC enrichment among vaccinated groups. Overall, the genomic diversity of SARS-CoV-2 recovered post-vaccination appears to proportionally represent the observed viral diversity within the community.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.31.21254851

ABSTRACT

Background Recent efforts have identified genetic loci that are associated with coronavirus disease 2019 (COVID-19) infection rates and disease outcome severity. Translating these genetic findings into druggable genes and readily available compounds that reduce COVID-19 host susceptibility is a critical next step. Methods We integrate COVID-19 genetic susceptibility variants, multi-tissue genetically regulated gene expression (GReX) and perturbargen signatures to identify candidate genes and compounds that reverse the predicted gene expression dysregulation associated with COVID-19 susceptibility. The top candidate gene is validated by testing both its GReX and observed blood transcriptome association with COVID-19 severity, as well as by in vitro perturbation to quantify effects on viral load and molecular pathway dysregulation. We validate the in silico drug repositioning analysis by examining whether the top candidate compounds decrease COVID-19 incidence based on epidemiological evidence. Results We identify IL10RB as the top key regulator of COVID-19 host susceptibility. Predicted GReX up-regulation of IL10RB and higher IL10RB expression in COVID-19 patient blood is associated with worse COVID-19 outcomes. In vitro IL10RB overexpression is associated with increased viral load and activation of immune-related molecular pathways. Azathioprine and retinol are prioritized as candidate compounds to reduce the likelihood of testing positive for COVID-19. Conclusions We establish an integrative data-driven approach for gene target prioritization. We identify and validate IL10RB as a suitable molecular target for modulation of COVID-19 host susceptibility. Finally, we provide evidence for a few readily available medications that would warrant further investigation as drug repositioning candidates.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.08.21254791

ABSTRACT

SARS-CoV-2 Variants of Concerns (VOC), e.g., B.1.351 (20H/501Y.V2) and P1 (20J/501Y.V3), harboring N-terminal domain (NTD) or the receptor-binding domain (RBD) (e.g., E484K) mutations, exhibit reduced in vitro susceptibility to convalescent serum, commercial antibody cocktails, and vaccine neutralization, and have been associated with reinfection. The accumulation of these mutations could be the consequence of intra-host viral evolution due to prolonged infection in immunocompromised hosts. In this study, we document the microevolution of SARS-CoV-2 recovered from sequential tracheal aspirates from an immunosuppressed patient on tacrolimus, steroids and convalescent plasma therapy, and identify the emergence of multiple NTD and RBD mutations associated with reduced antibody neutralization as early as three weeks after infection. SARS-CoV-2 genomes from the first swab (Day 0) and three tracheal aspirates (Day 7, 21 and 27) were compared at the sequence level. We identified five different S protein mutations at the NTD or RBD regions from the second tracheal aspirate sample (21 Day). The S:Q493R substitution and S:243-244LA deletion had ~70% frequency, while ORF1a:A138T, S:141-144LGVY deletion, S:E484K and S:Q493K substitutions demonstrated ~30%, ~30%, ~20% and ~10% mutation frequency, respectively. However, the third tracheal aspirate sample collected one week later (Day 27) was predominated by the haplotype of ORF1a:A138T, S:141-144LGVY deletion and S:E484K (> 95% mutation frequency). Notably, S protein deletions (141-144LGVY and 243-244LA deletions in NTD region) and substitutions (Q493K/R and E484K in the RBD region) previously showed reduced susceptibly to monoclonal antibody or convalescent plasma. The observation supports the hypothesis that VOCs can independently arise and that immunocompromised patients on convalescent plasma therapy are potential breeding grounds for immune-escape mutants.


Subject(s)
Pregnancy, Prolonged
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.26.21253712

ABSTRACT

Spike protein mutations E484K and N501Y carried by SARS-CoV-2 variants have been associated with concerning changes of the virus, including resistance to neutralizing antibodies and increased transmissibility. While the concerning variants are fast spreading in various geographical areas, identification and monitoring of these variants is lagging far behind, due in large part to the slow speed and insufficient capacity of viral sequencing. In response to the unmet need for a fast and efficient screening tool, we developed a single-tube duplex molecular assay for rapid and simultaneous identification of E484K and N501Y mutations from nasopharyngeal swab (NS) samples within 2.5 h from sample preparation to report. Using this tool, we screened a total of 435 clinical NS samples collected from COVID patients at 8 hospitals within the Hackensack Meridian Health network in New Jersey. While B.1.351 and P.1 variants were absent from the current study, our data revealed a dramatic increase in the frequency of E484K over time, underscoring the need for continuous epidemiological monitoring.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.08.434433

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.


Subject(s)
Lung Diseases , Respiratory Distress Syndrome , Severe Acute Respiratory Syndrome , Chronobiology Disorders , COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.08.425999

ABSTRACT

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between brain tropism, neuroinflammation and host immune response has not been well characterized. We analyzed 68,557 single-nucleus transcriptomes from three brain regions (dorsolateral prefrontal cortex, medulla oblongata and choroid plexus) and identified an increased proportion of stromal cells and monocytes in the choroid plexus of COVID-19 patients. Differential gene expression, pseudo-temporal trajectory and gene regulatory network analyses revealed microglial transcriptome perturbations, mediating a range of biological processes, including cellular activation, mobility and phagocytosis. Quantification of viral spike S1 protein and SARS-CoV-2 transcripts did not support the notion of brain tropism. Overall, our findings suggest extensive neuroinflammation in patients with acute COVID-19.


Subject(s)
Coronavirus Infections , COVID-19 , Brain Diseases , Papilloma, Choroid Plexus
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426080

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in golden Syrian hamster (GSH) causes lungs pathology and resembles to human corona virus disease (Covid-19). Extra-pulmonary pathologies and immunological parameters of SARS-CoV-2 infection remained undefined in GSH. Using in silico modelling, we identified the similarities between human and hamster angiotensin-converting enzyme-2 (ACE-2), neuropilin-1 (NRP-1) that bind to receptor-binding domain (RBD) and S1 fragment of spike protein of SARS-CoV-2. SARS-CoV-2 infection led to lung pathologies, and cardiovascular complications (CVC) marked by interstitial coronary fibrosis and acute inflammatory response. Serum lipidomic and metabolomic profile of SARS-CoV-2-infected GSH revealed changes in serum triglycerides (TG) and low-density lipoprotein (LDL), and alterations in metabolites that correlated with Covid19. Together, we propose GSH as an animal model to study SARS-CoV-2 infection and its therapy associated with pulmonary and extra-pulmonary pathologies.


Subject(s)
Coronavirus Infections , Cardiovascular Diseases , Severe Acute Respiratory Syndrome , Coronary Disease , Virus Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL